|
|
電子電路維修測試儀的ASA測試的理論(之二)是什么?<BR> (接之一)<BR> 二、電阻的VI曲線<BR> 電阻的電壓、電流方程最為大家熟悉。即R=V/I。方程說明在電阻負載上,電壓和電流是線性關系。顯示在VI平面上,就是一條過零點的斜線。其斜率大小表示其阻值。如下圖:</P><P> (見圖一)</P><P> <BR> 當電阻增加時,斜率減小,斜線向水平方向變動;當電阻減小時,斜率增大,斜線向垂直方向變動。<BR> 三、電容的VI曲線<BR> 通常情況下人們不關心電容的電壓、電流方程。但它對電路測試儀來說,卻是十分重要的。現將其方程推導如下:<BR> 電容的數學模型為:</P><P> du<BR> i = C--------<BR> dt</P><P> 即將一個交變電壓施加在電容上,通過電容的電流和電壓隨時間的變化成正比。比值就是電容值。將正弦波:V = VM Sinωt 加在電容上,我們就有:</P><P> du d<BR> i = c------ = C------(VmSintωt) = VmωCcosωt<BR> dt dt</P><P> 因此,加在電容兩端的電壓和電流給出為:</P><P> V = VM Sinωt<BR> i=VMωc cosωt</P><P> 為了在VI平面上將電壓和電流關系表現出來,將上兩式平方后求和,整理后得到:<BR> u 2 i 2 2 2<BR> (--------) + (------------) = Sin ωt + cos ωt<BR> Vm Vmωc</P><P> 因為:</P><P> 2 2<BR> Sin ωt + cos ωt =1</P><P> 可消去時間參數t,得到電容的VI曲線方程:</P><P> u 2 i 2 <BR> (--------) + (------------) = 1<BR> Vm Vmωc</P><P> <BR> 這是一個橢圓方程。其中:<BR> VM:正弦波幅值;<BR> ω:正弦波的角頻率,并且ω=2Лf,f為正弦波頻率;<BR> C:電容值。<BR> 這是在理想電壓源作用下電容的VI曲線方程。實際進行VI曲線測試時,總要給電壓源串上一個輸出電阻R。考慮到R的影響,電容的VI曲線方程變為:</P><P> u 2 i 2<BR> (--------(1+Rωc)) + (----------(1+Rωc)) = 1<BR> Vm Vmωc</P><P> 從上式可以看出:<BR> 當 u=0時,<BR> c<BR> i = Vmω------------<BR> (1+Rωc)</P><P> 當i=0時,</P><P> Vm<BR> v = ------------<BR> (1+Rωc)</P><P> <BR> 由此可得出下圖:</P><P> (見圖二)</P><P> 如果我們希望得到一個很圓的電容曲線,在f=48Hz,橫軸單位取:伏,縱軸單位取:毫安時,可以算出電容約為3.3V。(待續)。 <BR> <br><A HREF="/editor/uploadfiles/learns01/2004891051887392.jpg" TARGET=_blank><IMG SRC="/editor/uploadfiles/learns01/2004891051887392.jpg" border=0 alt=按此在新窗口瀏覽圖片 onload="javascript:if(this.width>580)this.width=580"></A><br><A HREF="/editor/uploadfiles/learns01/2004891055515071.bmp" TARGET=_blank><IMG SRC="/editor/uploadfiles/learns01/2004891055515071.bmp" border=0 alt=按此在新窗口瀏覽圖片 onload="javascript:if(this.width>580)this.width=580"></A><br><A HREF="/editor/uploadfiles/learns01/2004891064495287.bmp" TARGET=_blank><IMG SRC="/editor/uploadfiles/learns01/2004891064495287.bmp" border=0 alt=按此在新窗口瀏覽圖片 onload="javascript:if(this.width>580)this.width=580"></A>
|
|
狀 態:
離線
公司簡介
產品目錄
|
|
公司名稱:
|
北京啟威納科貿有限公司
|
聯 系 人: |
孫東明
|
電 話: |
010-62612466
|
傳 真: |
010-62534979 |
地 址: |
北京市海淀區海淀南路31號106室 |
郵 編: |
100080 |
主 頁: |
|
|
|
|
|